

Daily Tutorial Sheet-5

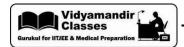
Level-1

61.(D) NaBH₄ reduces only carbonyl group, not carboxylic acids and esters.

62.(B) RBr is more reactive than RCl as bond is longer and weaker.

- **65.(A)** Simple distillation will separate MeOH(b.p. = 64.7° C) from H₂O(b.p. = 100° C); due to difference in their b.p.(s) p, being high.
- **66.(A)** Alcohol will be 2° [Lucas test after some time]

$$\begin{array}{c|c} & & & \\ \hline & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline$$


67.(D)
$$P = \begin{array}{c} HO \\ OH \\ OH \\ OH \\ OH \end{array}$$
 [NaBH₄ does not reduce ester group to give alcohols]
$$Q = \begin{array}{c} HO \\ OH \\ HO \\ OH \end{array}$$
 [LiAlH₄ reduces aldehyde, ketones, acids & esters to alcohols]

So there are 2 alcoholic groups in P and 3 in Q.

68.(C) Obviously H-bonding does not exist in thiols.

70.(CD) EtMgI + A
$$\xrightarrow{H^+(aq)}$$
 B \xrightarrow{PCC} (no reaction) (an alcohol)

B is tertiary alcohol as it resist oxidation. Hence A has to be a ketone

Hence A is :
$$CH_3CH_2 - C - CH_3 \xrightarrow{1. EtMgI} Et - C - CH_3 \quad (3^\circ)$$

or A can be
$$OH \\ 1. EtMgI \\ CH_3$$

$$OH \\ CH_3$$

$$OH \\ (3^\circ)$$

- **71.(D)** $CH_3CH = CH_2 \xrightarrow{1. BH_3 / THF} CH_3CH_2CH_2OH \xrightarrow{PCC} CH_3CH_2CHO$
- **72.(A)** OH activates the ring via strong +M effect at o-ortho and p-para position to it. Note that CH_3 also activates the ring via +H effect at the same positions.

73.(A)
$$CH = CH_2 \xrightarrow{H^+} CH_3 \xrightarrow{H^- \text{shift}} CH_2 CH_3$$

$$Et \xrightarrow{-H^+} CH_3 OH$$

$$CH_3 CH_2 CH_3$$

74.(B)
$$CH_2OCH_3 \xrightarrow{HBr} CH_2 \xrightarrow{C} CH_2 \xrightarrow{C} CH_3 \xrightarrow{C} CH_3OH + CH_2OH +$$

75.(CD) (A) is :
$$H_3C$$
 CH_2 CH_2 CH_2 CH_3 CH_4 CH_4 CH_4 CH_4 CH_5 CH

 CH_3

 Br^+